Towards Big Topic Modeling
نویسندگان
چکیده
To solve the big topic modeling problem, we need to reduce both time and space complexities of batch latent Dirichlet allocation (LDA) algorithms. Although parallel LDA algorithms on the multi-processor architecture have low time and space complexities, their communication costs among processors often scale linearly with the vocabulary size and the number of topics, leading to a serious scalability problem. To reduce the communication complexity among processors for a better scalability, we propose a novel communication-efficient parallel topic modeling architecture based on power law, which consumes orders of magnitude less communication time when the number of topics is large. We combine the proposed communication-efficient parallel architecture with the online belief propagation (OBP) algorithm referred to as POBP for big topic modeling tasks. Extensive empirical results confirm that POBP has the following advantages to solve the big topic modeling problem: 1) high accuracy, 2) communication-efficient, 3) fast speed, and 4) constant memory usage when compared with recent state-of-the-art parallel LDA algorithms on the multi-processor architecture.
منابع مشابه
Topic Modeling using Topics from Many Domains, Lifelong Learning and Big Data
Topic modeling has been commonly used to discover topics from document collections. However, unsupervised models can generate many incoherent topics. To address this problem, several knowledge-based topic models have been proposed to incorporate prior domain knowledge from the user. This work advances this research much further and shows that without any user input, we can mine the prior knowle...
متن کاملCo-word maps and topic modeling: A comparison using small and medium-sized corpora (N < 1, 000)
Induced by “big data,” “topic modeling” has become an attractive alternative to mapping cowords in terms of co-occurrences and co-absences using network techniques. Does topic modeling provide an alternative for co-word mapping in research practices using moderately sized document collections? We return to the word/document matrix using first a single text with a strong argument (“The Leiden Ma...
متن کاملModel-Parallel Inference for Big Topic Models
In real world industrial applications of topic modeling, the ability to capture gigantic conceptual space by learning an ultra-high dimensional topical representation, i.e., the so-called “big model”, is becoming the next desideratum after enthusiasms on ”big data”, especially for fine-grained downstream tasks such as online advertising, where good performances are usually achieved by regressio...
متن کاملDynamic Topic Modeling to Infer the Influence of Research Citations on IPCC Assessment Reports
A common Big Data problem is the need to integrate large temporal data sets from various data sources into one comprehensive structure. Having the ability to correlate evolving facts between data sources can be especially useful in supporting a number of desired application functions such as inference and influence identification. As a real world application we use climate change publications b...
متن کاملOnline Belief Propagation for Topic Modeling
Not only can online topic modeling algorithms extract topics from big data streams with constant memory requirements, but also can detect topic shifts as the data stream flows. Fast convergence speed is a desired property for batch learning topic models such as latent Dirichlet allocation (LDA), which can further facilitate developing fast online topic modeling algorithms for big data streams. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Inf. Sci.
دوره 390 شماره
صفحات -
تاریخ انتشار 2017